

The VKL-8301 **Multiple Beam Klystron**

ITRP Visit to DESY, 5th/6th April 2004

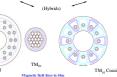
The LC cold option

E. Wright, A. Balkcum, H. Bohlen, M. Cattelino, L. Cox, M. Cusick, E. Eisen, K. Eppley[†], F. Friedlander, S. Lenci, J. Petillo[†], A. Staprans, B. Stockwell and L. Zitelli Communications and Power Industries, Microwave Power Products Division 811 Hansen Way, M/S B-450, Palo Alto, CA 94303-0750

†SAIC, Suite 130, 20 Burlington Mall Rd, Burlington, MA 01803

Advantages

- Lower operating voltage for a given RF power level.
- High efficiency vs. microperveance. Large instantaneous bandwidths. Compact, lightweight. Low Noise.


Disadvantages

- Difficult to focus the electron beams; high DC and/or RF body current.
- Lower average power (I_{by}) . High cathode loading (some configurations).
- Brillouin focusing.
- Uniform magnetic focusing field.

There are 2 classes of MBK's*

Fundamental Mode

Higher Order Mode

Fundamental Mode (FM) MBK

- Large instantaneous bandwidth (TMo)
- Low Voltage

- High cathode loading (TMo1).
- Beams confined by $\sim \lambda_0/4$ in diameter (TM₀₁) or radial extent (TMol Coaxial); singly convergent.
- Beam interacts with high rf magnetic fields.

Higher Order Mode (HM) MBK

Advantages

- · High-voltage, high-power operation.
- · Low cathode loading; beam area convergence free of λ./4 constraint.

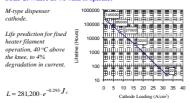
- · Increasingly difficult to focus beams as you move away from geometric centerline.
- Electron gun complexity, cost (offset... by J_).
- · Narrow-band as a result of the over-moded rf structures used.

*1) Edward A. Gelvich, Multi-beam amplifiers, NRL Sponsored MBK symposium, 2001 2) A Review of the Development of Multiple-Beam Klystrons and TWT's, G. Nusinovich, B. Levush, D. Abe, NRL/MR/6840--03-8673

MBK selection process

The advantages and disadvantages of each MBK class must be weighed for a specific application

on to most vacuum devices is the need for long operational lifetimes (the exception to this rule: expendables).

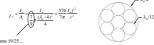

For mature products, the typical end-of-life failure mechanism is

All things being equal, a good starting point is to determine the desired life of the device, which relates directly to cathode loading

STEP 1: What's important?

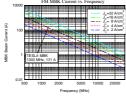
Primary Consideration		First look
Bandwidth		FM-MBK
High Power		Depends 2 nd Consideration
Maximum Life	_	HM.MRK

STEP 2: Where do we want to operate?


STEP 3: What constraints do we need to consider?

FM-MBKs (TM₀₁ in particular) are constrained by cathode loading, HM-MBK's are not, because:

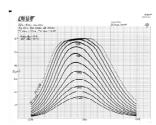
•RF cavity design for the FM-MBK require the beam-cluster to fall within a circle of approximately $\lambda /4$.


*Singly-convergent guns must have concentric cathodes and drift

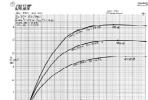
Recognizing this, the best-case cathode loading for a given current and frequency can be computed.

STEP 4: Evaluat

STEP 5: Select


CPI recommends the HM-MBK approach.

Progress Report


The klystron begin first-test on March 22, 2004.

Several additional weeks of tuning and conditioning v be required before customer source inspection.

Below are some early results showing operation at 6 MW.

Measured Performance

Photo gallery of the VKL-8301 MBK

3D electron gun simulation

MICHELLE

3D RF cavity design MAFIA

Modeling and Simulation

A number of design codes were used to model the performance of the VKL-8301 MBK.

Electron Beam Simulation CPI's XGUN 2.5 D Michelle 3D Magnetostatics Simulation Poisson 2D CPI's LSCEX 1D CPI's TWODRE 2D

Thermo-mechanical Ansys 2D and 3D

Operating parameters

eak Power Output	10	MW (min)
ve. Power Output	150	kW (min)
eam Voltage	114	kV (typ)
eam Current	131	A (typ)
fficiency	65, 67	% (typ, goal)
requency	1.3	GHz
ulse Duration	1.5	ms (min)
aturated Gain	47	dB (min)
lumber of Beams	6	
lumber of Cavities	2+3+1	HOM, fund., harm.
ocusing	CFF	
athode loading	≤2.5	A/cm2 (typ)
olenoid Power	4	kW (typ)
ength	2300	mm (typ)
tiameter	560	mm (tvp. gun)

To the right are some examples of our modeling and simulation results...

S3 - MAFIA 3D